Note

N-Acyl derivatives of chitosan and their hydrolysis by chitinase

SHIGEHIRO HIRANO AND TADAHIRO MATSUMURA

Department of Agricultural Biochemistry, Tottori University, Tottori 680 (Japan)

(Received December 20th, 1986; accepted for publication, February 11th, 1987)

Chitinase (EC 3.2.1.14) hydrolyses chitin, a $(1\rightarrow 4)$ -linked 2-acetamido-2-deoxy- β -D-glucan, to afford oligosaccharides. We now report some novel structural variants of chitin and their hydrolysis by chitinase, in continuation of our interest in the substrate specificity¹ of the enzyme.

N,O-Acylation² of chitosan (N-deacetylated chitin) and O-deacylation of the products gave, in yields of 42–59%, N-glycoloyl ($\mathbf{1}$, d.s. 0.84), N-(DL-lactoyl) ($\mathbf{2}$, d.s. 0.85), N-(O-methylglycoloyl) ($\mathbf{3}$, d.s. 1.0), N-thioglycoloyl ($\mathbf{4}$, d.s. 0.62), N-(3-mercaptopropionyl) ($\mathbf{5}$, d.s. 0.68–0.73), and N-thioglycoloyl-N-decanoyl [$\mathbf{6}$, d.s. 0.77 (0.54/0.28 for thioglycoloyl/decanoyl)] derivatives, of which only $\mathbf{1}$ and $\mathbf{4}$ were soluble in water. The d.s. values for N,O-acyl groups in the products were 1.8–1.9. O-Deacylation was accompanied by some N-deacylation even under mild conditions, and this accounts for the variation of d.s. for N-acyl group (d.s. 0.6–1.0) in $\mathbf{1}$ - $\mathbf{6}$.

 $3 R = CH_2OCH_3$ $4 R = CH_2SH$ $5 R = CH_2CH_2SH$

 $6 R = CH_2SH/(CH_2)_8CH_3$

The rates of hydrolysis of 1–6 by chitinase are shown in Table I. The rates of hydrolysis with respect to R of the RCONH group are summarised in the sequence CH_2OH (1) > $CH(OH)CH_3$ (2) > $CH_2CH_3^1$ > CH_3 (crab-shell chitin) 1 > H^1 >

0008-6215/87/\$ 03.50

© 1987 Elsevier Science Publishers B.V.

NOTE 121

 CH_2OCH_3 (3) > $CH_2CH_2CH_3^1$ > $CH(CH_3)_2^1$ > $CH_2NH_2^1$ > CH_2Cl^1 ; derivatives where R is CH_2SH (4), CH_2CH_2SH (5), CF_3^3 , and $(CH_2)_nCH_3$ (6, n > 3) were not hydrolysed, presumably because formation of the ES complex was sterically hindered. Compound 1 (R = CH_2OH) was hydrolysed at a rate higher than that of N-acetylchitosan xerogel¹, but 4 (R = CH_2SH) was not hydrolysed, indicating an inhibition of the enzymic reaction by the SH group.

TABLE I RATES OF HYDROLYSIS OF N-ACYLATED DERIVATIVES OF CHITOSAN BY CHITINASE^{α}

N-Acylchitosan	Increase in reducing sugar value (µmol/2 h) ^b	Relative rate ^r
Glycoloyl (1)	2.68	10.0
DL-Lactoyl (2)	0.52	2.0
Chitin (crab shell)d	0.26	1.0
O-Methylglycoloyl (3)	0.17	0.7

^aN-Thioglycoloyl (4), N-(3-mercaptopropionyl) (5), N-thioglycoloyl-N-decanoyl (6), and N-trifluoro-acetyl³ derivatives were not hydrolysed. ^bThe value was calculated as 2-acetamido-2-deoxy-D-glucose. ^cRelative to the reducing value of natural chitin (crab shell). ^dRef. 1.

EXPERIMENTAL

D.s. for N and O-acyl groups was calculated from C/N and S/N values in the elemental analyses. Enzymic hydrolysis was performed, as reported¹, in 0.05M citric acid-0.01M Na₂HPO₄ buffer (pH 6.6) by chitinase from *Streptomyces griseus* (Sigma, 3 U/mg). Increase of reducing-sugar value was analysed by a modified Schales' method⁴, and expressed as μ mol of 2-acetamido-2-deoxy-D-glucose. The other analytical methods have been reported¹.

Acylation of chitosan. — $(a)^2$ Chitosan $\{0.16 \text{ g}, [\alpha]_D^{17} - 9^\circ \text{ (c 0.5, aqueous 2\% acetic acid); C/N, 6.01}$ was stirred severally with 7 g each of glycolic, DL-lactic, O-methylglycolic, thioglycolic, and 3-mercaptopropionic acids at 70-80° for 40 h.

(b)³ A solution of chitosan (0.16 g) in a mixture of the carboxylic acid (7 g) and decanoic anhydride (3 g) was stirred at 70–80° for 40 h. The product obtained as in (a) and (b) was poured into acetone (~100 mL). The precipitate was collected. washed with ethanol and ether, and dried to afford the N, O-acyl derivative, which had i.r. absorptions at ~1750 and ~1210 (C=O and C-O of O-acyl), ~1650 and ~1550 cm⁻¹ (C=O and NH of N-acyl). The product was O-deacylated by treatment with 0.01M NaOH at room temperature for 18 h to afford the N-acyl derivative, which was isolated directly or after the addition of ethanol (3 vol.). The product had no i.r. absorption for O-acyl group. Compound 1 (59% yield; C/N, 7.69), $[\alpha]_D^{18}$ -11° (c 1, water), obtained as in (b), gave glycolic acid (R_F 0.64); and 2 (42% yield; C/N, 8.57), obtained as in (b), gave DL-lactic acid (R_F 0.78) on hydrolysis (2M HCl,

122 NOTE

100°, 20 h), as indicated by p.c. (13:3:1 ether-acetic acid-water). Compounds 3 (50% yield; C/N, 8.98) and 5 (53% yield; C/N, 8.05; and S/N, 0.73) were obtained as in (a); 4 (51% yield; C/N, 7.25; and S/N, 0.62; $[\alpha]_D^{18} -11^\circ$ (c 0.5, water) was obtained as in (a); and 6 (55% yield; C/N, 9.38; and S/N, 0.54) was obtained as in (b).

ACKNOWLEDGMENTS

This work was supported by the Nippon Life Insurance Foundation and the Research Fund for "Biomass Conversion Planning" of the Ministry of Agriculture, Forestry, and Fisherics of Japan.

REFERENCES

- 1 S. HIRANO AND Y. YAGI, Carbohydr. Res., 83 (1980) 103-108.
- 2 P. KARRER AND S. M. WHITE, Helv. Chim. Acta, 13 (1930) 1105-1113.
- 3 S. HIRANO AND Y. KONDO, Nippon Kagaku Kaishi, (1982) 1622-1625.
- 4 T. IMOTO AND K. YAGISHITA, Agric. Biol. Chem., 35 (1971) 1154-1156.